Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Am J Trop Med Hyg ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38507807

RESUMO

Melioidosis, infection caused by Burkholderia pseudomallei, is characterized by robust innate immune responses. We have previously reported associations of TLR1 single nucleotide missense variant rs76600635 with mortality and of TLR5 nonsense variant rs5744168 with both bacteremia and mortality in single-center studies of patients with melioidosis in northeastern Thailand. The objective of this study was to externally validate the associations of rs76600635 and rs5744168 with bacteremia and mortality in a large multicenter cohort of melioidosis patients. We genotyped rs76600635 and rs5744168 in 1,338 melioidosis patients enrolled in a prospective parent cohort study conducted at nine hospitals in northeastern Thailand. The genotype frequencies of rs76600635 did not differ by bacteremia status (P = 0.27) or 28-day mortality (P = 0.84). The genotype frequencies of rs5744168 did not differ by either bacteremia status (P = 0.46) or 28-day mortality (P = 0.10). Assuming a dominant genetic model, there was no association of the rs76600635 variant with bacteremia (adjusted odds ratio [OR], 0.75; 95% CI, 0.54-1.04, P = 0.08) or 28-day mortality (adjusted OR, 0.96; 95% CI, 0.71-1.28, P = 0.77). There was no association of the rs5744168 variant with bacteremia (adjusted OR, 1.24; 95% CI, 0.76-2.03, P = 0.39) or 28-day mortality (adjusted OR, 1.22; 95% CI, 0.83-1.79, P = 0.21). There was also no association of either variant with 1-year mortality. We conclude that in a large multicenter cohort of patients hospitalized with melioidosis in northeastern Thailand, neither TLR1 missense variant rs76600635 nor TLR5 nonsense variant rs5744168 is associated with bacteremia or mortality.

2.
Vet Res ; 55(1): 18, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351086

RESUMO

Although cattle are the mammalian species with most global biomass associated with a huge impact on our planet, their immune system remains poorly understood. Notably, the bovine immune system has peculiarities such as an overrepresentation of γδ T cells that requires particular attention, specifically in an infectious context. In line of 3R principles, we developed an ex vivo platform to dissect host-pathogen interactions. The experimental design was based on two independent complementary readouts: firstly, a novel 12-14 color multiparameter flow cytometry assay measuring maturation (modulation of cell surface marker expression) and activation (intracellular cytokine detection) of monocytes, conventional and plasmacytoid dendritic cells, natural killer cells, γδ T cells, B and T cells; secondly, a multiplex immunoassay monitoring bovine chemokine and cytokine secretion levels. The experiments were conducted on fresh primary bovine blood cells exposed to Mycoplasmopsis bovis (M. bovis), a major bovine respiratory pathogen. Besides reaffirming the tight cooperation of the different primary blood cells, we also identified novel key players such as strong IFN-γ secreting NK cells, whose role was so far largely overlooked. Additionally, we compared the host-pathogen interactions at different temperatures, including commonly used 37 °C, ruminant body temperature (38-38.5 °C) and fever (≥ 39.5 °C). Strikingly, working under ruminant physiological temperature influenced the capacity of most immune cell subsets to respond to M. bovis compared to 37 °C. Under fever-like temperature conditions the immune response was impaired compared to physiological temperature. Our experimental approach, phenotypically delineating the bovine immune system provided a thorough vision of the immune response towards M. bovis and the influence of temperature towards that immune response.


Assuntos
Doenças dos Bovinos , Mycobacterium bovis , Tuberculose Bovina , Animais , Bovinos , Temperatura , Citocinas/metabolismo , Ativação Linfocitária , Ruminantes/metabolismo
3.
Front Med (Lausanne) ; 10: 1211265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457570

RESUMO

Introduction: Melioidosis is an often-fatal tropical infectious disease caused by the Gram-negative bacillus Burkholderia pseudomallei, but few studies have identified promising biomarker candidates to predict outcome. Methods: In 78 prospectively enrolled patients hospitalized with melioidosis, six candidate protein biomarkers, identified from the literature, were measured in plasma at enrollment. A multi-biomarker model was developed using least absolute shrinkage and selection operator (LASSO) regression, and mortality discrimination was compared to a clinical variable model by receiver operating characteristic curve analysis. Mortality prediction was confirmed in an external validation set of 191 prospectively enrolled patients hospitalized with melioidosis. Results: LASSO regression selected IL-1R2 and soluble triggering receptor on myeloid cells 1 (sTREM-1) for inclusion in the candidate biomarker model. The areas under the receiver operating characteristic curve (AUC) for mortality discrimination for the IL-1R2 + sTREM-1 model (AUC 0.81, 95% CI 0.72-0.91) as well as for an IL-1R2-only model (AUC 0.78, 95% CI 0.68-0.88) were higher than for a model based on a modified Sequential Organ Failure Assessment (SOFA) score (AUC 0.69, 95% CI 0.56-0.81, p < 0.01, p = 0.03, respectively). In the external validation set, the IL-1R2 + sTREM-1 model (AUC 0.86, 95% CI 0.81-0.92) had superior 28-day mortality discrimination compared to a modified SOFA model (AUC 0.80, 95% CI 0.74-0.86, p < 0.01) and was similar to a model containing IL-1R2 alone (AUC 0.82, 95% CI 0.76-0.88, p = 0.33). Conclusion: Biomarker models containing IL-1R2 had improved 28-day mortality prediction compared to clinical variable models in melioidosis and may be targets for future, rapid test development.

4.
Front Immunol ; 14: 1072732, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020544

RESUMO

Sepsis is a complex heterogeneous condition, and the current lack of effective risk and outcome predictors hinders the improvement of its management. Using a reductionist approach leveraging publicly available transcriptomic data, we describe a knowledge gap for the role of ACVR1B (activin A receptor type 1B) in sepsis. ACVR1B, a member of the transforming growth factor-beta (TGF-beta) superfamily, was selected based on the following: 1) induction upon in vitro exposure of neutrophils from healthy subjects with the serum of septic patients (GSE49755), and 2) absence or minimal overlap between ACVR1B, sepsis, inflammation, or neutrophil in published literature. Moreover, ACVR1B expression is upregulated in septic melioidosis, a widespread cause of fatal sepsis in the tropics. Key biological concepts extracted from a series of PubMed queries established indirect links between ACVR1B and "cancer", "TGF-beta superfamily", "cell proliferation", "inhibitors of activin", and "apoptosis". We confirmed our observations by measuring ACVR1B transcript abundance in buffy coat samples obtained from healthy individuals (n=3) exposed to septic plasma (n = 26 melioidosis sepsis cases)ex vivo. Based on our re-investigation of publicly available transcriptomic data and newly generated ex vivo data, we provide perspective on the role of ACVR1B during sepsis. Additional experiments for addressing this knowledge gap are discussed.


Assuntos
Melioidose , Sepse , Humanos , Fator de Crescimento Transformador beta/metabolismo , Receptores de Ativinas Tipo I/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-36570973

RESUMO

Background: Melioidosis is a neglected tropical infection caused by the environmental saprophyte Burkholderia pseudomallei. Methods: We conducted a prospective, observational study at nine hospitals in northeastern Thailand, a hyperendemic melioidosis zone, to define current characteristics of melioidosis patients and quantify outcomes over one year. Findings: 2574 individuals hospitalised with culture-confirmed melioidosis were screened and 1352 patients were analysed. The median age was 55 years, 975 (72%) were male, and 951 (70%) had diabetes. 565 (42%) patients presented with lung infection, 1042 (77%) were bacteremic, 442 (33%) received vasopressors/inotropes and 547 (40%) received mechanical ventilation. 1307 (97%) received an intravenous antibiotic against B. pseudomallei. 335/1345 (25%) patients died within one month and 448/1322 (34%) of patients died within one year. Most patients had risk factors for melioidosis, but patients without identified risk factors did not have a reduced risk of death. Of patients discharged alive, most received oral trimethoprim-sulfamethoxazole, which was associated with decreased risk of post-discharge death; 235/970 (24%) were readmitted, and 874/1015 (86%) survived to one year. Recurrent infection was detected in 17/994 patients (2%). Patients with risk factors other than diabetes had increased risk of death and increased risk of hospital readmission. Interpretation: In northeastern Thailand patients with melioidosis experience high rates of bacteremia, organ failure and death. Most patients discharged alive survive one year although all-cause readmission is common. Recurrent disease is rare. Strategies that emphasize prevention, rapid diagnosis and intensification of early clinical management are likely to have greatest impact in this and other resource-restricted regions. Funding: US NIH/NIAID U01AI115520.

6.
PLoS One ; 16(8): e0255943, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34383819

RESUMO

Xenorhabdus and Photorhabdus are gram negative bacteria that can produce several secondary metabolites, including antimicrobial compounds. They have a symbiotic association with entomopathogenic nematodes (EPNs). The aim of this study was to isolate and identify Xenorhabdus and Photorhabdus species and their associated nematode symbionts from Northeastern region of Thailand. We also evaluated the antibacterial activity of these symbiotic bacteria. The recovery rate of EPNs was 7.82% (113/1445). A total of 62 Xenorhabdus and 51 Photorhabdus strains were isolated from the EPNs. Based on recA sequencing and phylogeny, Xenorhabdus isolates were identified as X. stockiae (n = 60), X. indica (n = 1) and X. eapokensis (n = 1). Photorhabdus isolates were identified as P. luminescens subsp. akhurstii (n = 29), P. luminescens subsp. hainanensis (n = 18), P. luminescens subsp. laumondii (n = 2), and P. asymbiotica subsp. australis (n = 2). The EPNs based on 28S rDNA and internal transcribed spacer (ITS) analysis were identified as Steinernema surkhetense (n = 35), S. sangi (n = 1), unidentified Steinernema (n = 1), Heterorhabditis indica (n = 39), H. baujardi (n = 1), and Heterorhabditis sp. SGmg3 (n = 3). Antibacterial activity showed that X. stockiae (bMSK7.5_TH) extract inhibited several antibiotic-resistant bacterial strains. To the best of our knowledge, this is the first report on mutualistic association between P. luminescens subsp. laumondii and Heterorhabditis sp. SGmg3. This study could act as a platform for future studies focusing on the discovery of novel antimicrobial compounds from these bacterial isolates.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Nematoides/microbiologia , Photorhabdus/genética , Xenorhabdus/genética , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Larva/microbiologia , Testes de Sensibilidade Microbiana , Nematoides/classificação , Nematoides/genética , Nematoides/isolamento & purificação , Photorhabdus/química , Photorhabdus/classificação , Photorhabdus/isolamento & purificação , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Solo/química , Solo/parasitologia , Microbiologia do Solo , Simbiose , Xenorhabdus/química , Xenorhabdus/classificação , Xenorhabdus/isolamento & purificação
7.
Emerg Microbes Infect ; 10(1): 8-18, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33256556

RESUMO

Melioidosis is an often lethal tropical disease caused by the Gram-negative bacillus, Burkholderia pseudomallei. The study objective was to characterize transcriptomes in melioidosis patients and identify genes associated with outcome. Whole blood RNA-seq was performed in a discovery set of 29 melioidosis patients and 3 healthy controls. Transcriptomic profiles of patients who did not survive to 28 days were compared with patients who survived and healthy controls, showing 65 genes were significantly up-regulated and 218 were down-regulated in non-survivors compared to survivors. Up-regulated genes were involved in myeloid leukocyte activation, Toll-like receptor cascades and reactive oxygen species metabolic processes. Down-regulated genes were hematopoietic cell lineage, adaptive immune system and lymphocyte activation pathways. RT-qPCR was performed for 28 genes in a validation set of 60 melioidosis patients and 20 healthy controls, confirming differential expression. IL1R2, GAS7, S100A9, IRAK3, and NFKBIA were significantly higher in non-survivors compared with survivors (P < 0.005) and healthy controls (P < 0.0001). The AUROCC of these genes for mortality discrimination ranged from 0.80-0.88. In survivors, expression of IL1R2, S100A9 and IRAK3 genes decreased significantly over 28 days (P < 0.05). These findings augment our understanding of this severe infection, showing expression levels of specific genes are potential biomarkers to predict melioidosis outcomes.


Assuntos
Biomarcadores/sangue , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Melioidose/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Melioidose/sangue , Melioidose/genética , Pessoa de Meia-Idade , Estudos Prospectivos , Análise de Sequência de RNA , Análise de Sobrevida
8.
PLoS One ; 15(6): e0234129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32502188

RESUMO

Xenorhabdus and Photorhabdus, symbiotically associated with entomopathogenic nematodes (EPNs), produce a range of antimicrobial compounds. The objective of this study is to identify Xenorhabdus and Photorhabdus and their EPNs hosts, which were isolated from soil samples from Saraburi province, and study their antibacterial activity against 15 strains of drug-resistant bacteria. Fourteen isolates (6.1%), consisting of six Xenorhabdus isolates and eight Photorhabdus isolates, were obtained from 230 soil samples. Based on the BLASTN search incorporating the phylogenetic analysis of a partial recA gene, all six isolates of Xenorhabdus were found to be identical and closely related to X. stockiae. Five isolates of Photorhabdus were found to be identical and closely related to P. luminescens subsp. akhurstii. Two isolates of Photorhabdus were found to be identical and closely related to P. luminescens subsp. hainanensis. The remaining isolate of Photorhabdus was found to be identical to P. asymbiotica subsp. australis. The bacterial extracts from P. luminescens subsp. akhurstii showed strong inhibition the growth of S. aureus strain PB36 (MSRA) by disk diffusion, minimal inhibitory concentration, and minimal bactericidal concentration assay. The combination between each extract from Xenorhabdus/Photorhabdus and oxacillin or vancomycin against S. aureus strain PB36 (MRSA) exhibited no interaction on checkerboard assay. Moreover, killing curve assay of P. luminescens subsp. akhurstii extracts against S. aureus strain PB36 exhibited a steady reduction of 105 CFU/ml to 103 CFU/ml within 30 min. This study demonstrates that Xenorhabdus and Photorhabdus, showed antibacterial activity. This finding may be useful for further research on antibiotic production.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nematoides/microbiologia , Photorhabdus/metabolismo , Xenorhabdus/metabolismo , Animais , Antibacterianos/isolamento & purificação , Testes de Sensibilidade Microbiana , Oxacilina/farmacologia , Photorhabdus/classificação , Photorhabdus/isolamento & purificação , Filogenia , Solo/parasitologia , Vancomicina/farmacologia , Xenorhabdus/classificação , Xenorhabdus/isolamento & purificação
9.
Sci Rep ; 8(1): 9167, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907803

RESUMO

Burkholderia pseudomallei is a flagellated, gram-negative environmental bacterium that causes melioidosis, a severe infectious disease of humans and animals in tropical areas. We hypothesised that B. pseudomallei may undergo phenotypic adaptation in response to an increase in growth temperature. We analysed the growth curves of B. pseudomallei strain 153 cultured in Luria-Bertani broth at five different temperatures (25 °C-42 °C) and compared the proteomes of bacteria cultured at 37 °C and 42 °C. B. pseudomallei exhibited the highest growth rate at 37 °C with modest reductions at 30 °C, 40 °C and 42 °C but a more marked delay at 25 °C. Proteome analysis revealed 34 differentially expressed protein spots between bacterial cultures at 42 °C versus 37 °C. These were identified as chaperones (7 spots), metabolic enzymes (12 spots), antioxidants (10 spots), motility proteins (2 spots), structural proteins (2 spots) and hypothetical proteins (1 spot). Of the 22 down-regulated proteins at 42 °C, redundancy in motility and antioxidant proteins was observed. qRT-PCR confirmed decreased expression of fliC and katE. Experiments on three B. pseudomallei strains demonstrated that these had the highest motility, greatest resistance to H2O2 and greatest tolerance to salt stress at 37 °C. Our data suggest that temperature affects B. pseudomallei motility and resistance to stress.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/metabolismo , Farmacorresistência Bacteriana , Temperatura Alta , Proteoma/metabolismo , Estresse Fisiológico , Peróxido de Hidrogênio/farmacologia
10.
PLoS Negl Trop Dis ; 12(2): e0006287, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29474381

RESUMO

Burkholderia pseudomallei is an environmental bacterium that causes melioidosis, a major community-acquired infection in tropical regions. Melioidosis presents with a range of clinical symptoms, is often characterized by a robust inflammatory response, may relapse after treatment, and results in high mortality rates. Lipopolysaccharide (LPS) of B. pseudomallei is a potent immunostimulatory molecule comprised of lipid A, core, and O-polysaccharide (OPS) components. Four B. pseudomallei LPS types have been described based on SDS-PAGE patterns that represent the difference of OPS-type A, type B, type B2 and rough LPS. The majority of B. pseudomallei isolates are type A. We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) followed by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QqTOF MS) and gas chromatography to characterize the lipid A of B. pseudomallei within LPS type A isolates. We determined that B. pseudomallei lipid A is represented by penta- and tetra-acylated species modified with 4-amino-4-deoxy-arabinose (Ara4N). The MALDI-TOF profiles from 171 clinical B. pseudomallei isolates, including 68 paired primary and relapse isolates and 35 within-host isolates were similar. We did not observe lipid A structural changes when the bacteria were cultured in different growth conditions. Dose-dependent NF-κB activation in HEK cells expressing TLR4 was observed using multiple heat-killed B. pseudomallei isolates and corresponding purified LPS. We demonstrated that TLR4-dependent NF-κB activation induced by heat-killed bacteria or LPS prepared from OPS deficient mutant was significantly greater than those induced by wild type B. pseudomallei. These findings suggest that the structure of B. pseudomallei lipid A is highly conserved in a wide variety of clinical and environmental circumstances but that the presence of OPS may modulate LPS-driven innate immune responses in melioidosis.


Assuntos
Burkholderia pseudomallei/imunologia , Burkholderia pseudomallei/isolamento & purificação , Imunidade Inata , Lipídeo A/química , Lipídeo A/imunologia , Melioidose/microbiologia , Receptor 4 Toll-Like/imunologia , Amino Açúcares/química , Burkholderia pseudomallei/química , Burkholderia pseudomallei/crescimento & desenvolvimento , Células HEK293 , Humanos , Lipopolissacarídeos/química , Melioidose/imunologia , NF-kappa B/imunologia , Transdução de Sinais , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
11.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-700093

RESUMO

Objective:To evaluate the efficacy of symbiotic bacteria,Xenorhabdus indica,Xenorhabdus stockiae,Photorhabdus luminescens subsp,akhurstii and Photorhabdus luminescens subsp.hainanensis as a larvicide against Aedes aegypti and Aedes albopictus.Methods:Larvae (L3-L4) of Aedes aegyptiand Aedes albopictus were given 2 mL of a suspension 107-108 CFU/mL of each symbiotic bacterium.Distilled water and Escherichia coli ATCC· 25922 were used as the control.The morality rate of the larval mosquitoes was observed at 24,48,72 and 96 h.The experiment was performed in triplicates.Results:The larvae of both Aedes species started to die at 24 h exposure.Aedes aegypti showed the highest mortality rate (87%-99%),96 h after exposure to Xenorhabdus stockiae (bNBP22.2_TH).The mortality rate of Aedes albopictus was between 82% and 96% at 96 h after exposure to Xenorhabdus indica (bKK26.2_TH).Low effectiveness of distilled water and Escherichia coliATCC· 25922 were observed in both Aedes larvae,with a mortality rate of 2% to 12%.Conclusions:The study confirms the oral toxicity of Xenorhabdus and Photorhabdus bacteria against Aedes spp.Xenorhabdus stockiae and Xenorhabdusindica may be an alternative agent for control Aedes spp.This is basic information for further study on the mechanism of action on Aedes larvae or application to control mosquito larvae in the community.

12.
Parasit Vectors ; 10(1): 440, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28934970

RESUMO

BACKGROUND: Aedes aegypti is a potential vector of West Nile, Japanese encephalitis, chikungunya, dengue and Zika viruses. Alternative control measurements of the vector are needed to overcome the problems of environmental contamination and chemical resistance. Xenorhabdus and Photorhabdus are symbionts in the intestine of entomopathogenic nematodes (EPNs) Steinernema spp. and Heterorhabditis spp. These bacteria are able to produce a broad range of bioactive compounds including antimicrobial, antiparasitic, cytotoxic and insecticidal compounds. The objectives of this study were to identify Xenorhabdus and Photorhabdus isolated from EPNs in upper northern Thailand and to study their larvicidal activity against Ae. aegypti larvae. RESULTS: A total of 60 isolates of symbiotic bacteria isolated from EPNs consisted of Xenorhabdus (32 isolates) and Photorhabdus (28 isolates). Based on recA gene sequencing, BLASTN and phylogenetic analysis, 27 isolates of Xenorhabdus were identical and closely related to X. stockiae, 4 isolates were identical to X. miraniensis, and one isolate was identical to X. ehlersii. Twenty-seven isolates of Photorhabdus were closely related to P. luminescens akhurstii and P. luminescens hainanensis, and only one isolate was identical and closely related to P. luminescens laumondii. Xenorhabdus and Photorhabdus were lethal to Ae aegypti larvae. Xenorhabdus ehlersii bMH9.2_TH showed 100% efficiency for killing larvae of both fed and unfed conditions, the highest for control of Ae. aegypti larvae and X. stockiae (bLPA18.4_TH) was likely to be effective in killing Ae. aegypti larvae given the mortality rates above 60% at 72 h and 96 h. CONCLUSIONS: The common species in the study area are X. stockiae, P. luminescens akhurstii, and P. luminescens hainanensis. Three symbiotic associations identified included P. luminescens akhurstii-H. gerrardi, P. luminescens hainanensis-H. gerrardi and X. ehlersii-S. Scarabaei which are new observations of importance to our knowledge of the biodiversity of, and relationships between, EPNs and their symbiotic bacteria. Based on the biological assay, X. ehlersii bMH9.2_TH begins to kill Ae. aegypti larvae within 48 h and has the most potential as a pathogen to the larvae. These data indicate that X. ehlersii may be an alternative biological control agent for Ae. aegypti and other mosquitoes.


Assuntos
Aedes/microbiologia , Antibiose , Photorhabdus/isolamento & purificação , Photorhabdus/fisiologia , Rhabditoidea/microbiologia , Tylenchida/microbiologia , Xenorhabdus/isolamento & purificação , Xenorhabdus/fisiologia , Animais , Feminino , Larva/microbiologia , Masculino , Photorhabdus/classificação , Photorhabdus/genética , Filogenia , Rhabditoidea/fisiologia , Simbiose , Tailândia , Tylenchida/fisiologia , Xenorhabdus/classificação , Xenorhabdus/genética
13.
Front Microbiol ; 8: 1142, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28702004

RESUMO

Photorhabdus and Xenorhabdus are symbiotic with entomopathogenic nematodes (EPNs) of the genera Heterorhabditis and Steinernema, respectively. These bacteria produce several secondary metabolites including antimicrobial compounds. The objectives of this study were to isolate and identify EPNs and their symbiotic bacteria from Mae Wong National Park, Thailand and to evaluate the antibacterial activities of symbiont extracts against drug resistant bacteria. A total of 550 soil samples from 110 sites were collected between August 2014 and July 2015. A total of EPN isolates were obtained through baiting and White trap methods, which yielded 21 Heterorhabditis and 3 Steinernema isolates. Based on molecular identification and phylogenetic analysis, the most common species found in the present study was P. luminescens subsp. akhurstii associated with H. indica. Notably, two species of EPNs, H. zealandica and S. kushidai, and two species of symbiotic bacteria, X. japonica and P. temperata subsp. temperata represented new recorded organisms in Thailand. Furthermore, the association between P. temperata subsp. temperata and H. zealandica has not previously been reported worldwide. Disk diffusion, minimal inhibitory concentration, and minimal bactericidal concentration analyses demonstrated that the crude compound extracted by ethyl acetate from P. temperata subsp. temperata could inhibit the growth of up to 10 strains of drug resistant bacteria. Based on HPLC-MS analysis, compound classes in bacterial extracts were identified as GameXPeptide, xenoamicin, xenocoumacin, mevalagmapeptide phurealipids derivatives, and isopropylstilbene. Together, the results of this study provide evidence for the diversity of EPNs and their symbiotic bacteria in Mae Wong National Park, Thailand and demonstrate their novel associations. These findings also provide an important foundation for further research regarding the antimicrobial activity of Photorhabdus bacteria.

14.
Artigo em Inglês | MEDLINE | ID: mdl-29644816

RESUMO

Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis are used as biocontrol agents for insect pests. Survey of indigenous EPNs provides not only the diversity aspects but also the contribution in pest management in local areas. The objective of this study was to survey EPNs in upper northern Thailand. Nine hundred seventy soil samples were obtained from 194 sites in upper northern region of Thailand; of these 60 (6.2%) had EPNs in 2 genera: Steinernema (32 isolates) and Heterorhabditis (28 isolates). Most EPNs were isolated from loam with a soil temperature of 24-38°C, a pH of 1.5-7.0 and a soil moisture content of 0.5-6.8%. Molecular identification based on sequencing of a partial region of an internal transcribed spacer was performed for Heterorhabditis and the 28S rDNA for Steinernema. A BLASTN search of known sequence EPNs revealed 24 isolates of S. websteri and one isolate of S. scarabaei were identified; closely related to S. websteri (accession no. JF503100) and S. scarabaei (accession no. AY172023). The Heterorhabditis species identified were: H. indica (11 isolates), H. gerrardi (2 isolates) and Heterorhabditis sp (8 isolates). Phylogenetic analysis revealed 11 isolates of Heterorhabditis were related to H. indica; 2 isolates were related to Heterorhabditis gerrardi and 8 isolates were closely related to Heterorhabditis sp SGmg3. The study results show the genetic diversity of EPNs and describe a new observation of S. scarabaei and H. gerrardi in Thailand. This finding is new and provides important information for further study on using native EPNs in biological control.


Assuntos
Insetos/parasitologia , Nematoides/classificação , Nematoides/fisiologia , Animais , Interações Hospedeiro-Parasita , Nematoides/genética , Filogenia , Tailândia
15.
Artigo em Inglês | MEDLINE | ID: mdl-26867375

RESUMO

Entomopathogenic nematodes (EPNs) are used successfully for biological control of subterranean larval pests leading to reduced environmental contamination if chemical control measures are employed. Their diversity and distribution in Thailand are unclear, so the present study sought to obtain a better understanding these EPN populations in the lower northern region of Thailand. We collected 930 soil samples from 186 sites of Kamphaeng Phet, Nakhon Sawan, Phetchabun, Phichit, Phitsanulok, Sukhothai, Tak, Uthai Thani, and Uttaradit Provinces, Thailand from December 2011 to November 2012. Galleria mellonella was used as host for isolating and propagating EPNs. Seventy soil samples (7.5%) yielded EPNs of two genera, Steinernema (3.0%) and Heterorhabditis (4.5%). The majority of the isolated EPNs were found in loam at 26°C-33°C and pH values of 5.0-7.0. Molecular identification from partial 28S rDNA sequences revealed S. websteri, isolated from soil samples from Nakhon Sawan and Uthai Thani. Phylogenetic analysis of these EPNs showed they are closely related to S. websteri JC1032. The identification that S. websteri was the predominant EPN should enable its application for biological control in the local prevailing soil conditions.


Assuntos
DNA Ribossômico/genética , Nematoides/genética , Filogenia , Solo/parasitologia , Animais , Sequência de Bases , Controle de Insetos , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...